
Diffusion Break-Aware Leakage Power Optimization and
Detailed Placement in Sub-10nm VLSI

Sun ik Heo†, Andrew B. Kahng‡+, Minsoo Kim‡ and Lutong Wang‡

+CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA
†Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, South Korea

{abk, mik226, luw002}@ucsd.edu, sunik.heo@samsung.com

ABSTRACT

A diffusion break (DB) isolates two neighboring devices in a standard

cell-based design and has a stress effect on delay and leakage power.

In foundry sub-10nm design enablements, device performance is

changed according to the type of DB – single diffusion break (SDB)

or double diffusion break (DDB) – that is used in the library cell

layout. Crucially, local layout effect (LLE) can substantially affect

device performance and leakage. Our present work focuses on the

2nd DB effect, a type of LLE in which distance to the second-closest

DB (i.e., a distance that depends on the placement of a given cell’s

neighboring cell) also impacts performance of a given device. In this

work, we implement a 2nd DB-aware timing and leakage analysis

flow, and show how a lack of 2nd DB awareness can misguide cur-

rent optimization in place-and-route stages. We then develop 2nd

DB-aware leakage optimization and detailed placement heuristics.

Experimental results in a scaled foundry 14nm technology indicate

that our 2nd DB-aware analysis and optimization flow achieves, on

average, 80% recovery of the leakage increment that is induced by

the 2nd DB effect, without changing design performance.
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1 INTRODUCTION

With aggressive lateral scaling of advanced CMOS technology,

many challenges of standard cell architectures, floorplan, placement,

routing, and timing signoff have been introduced into leading-edge

IC design. Design today is challenged by numerous complex front-

end-of-line (FEOL) and back-end-of-line (BEOL) design rules and

layout restrictions. Moreover, aggressive area reduction via the

standard-cell architecture leads to a breakdown of the traditional

assumptions of composability and independence of cell-based lay-

out. Notably, in sub-10nm VLSI, a given cell instance’s timing and
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power can be strongly affected by the cell’s neighbors in the place-

ment; this is commonly referred to as local layout effect (LLE). Since

standard-cell library models are provided for the cell itself, without

regard to its neighbors in the placement, LLE induces performance

modeling errors and/or added margins in signoff. Today’s advanced-

node design and signoff technologies must now carefully take LLEs

into account.

New standard cell architecture with diffusion breaks. A dif-

fusion break (DB) isolates two adjacent devices and is one of sev-

eral critical aspects related to LLEs. For example, Slide 44 of the

DAC-2018 tutorial [13], referring to such sources as [1], notes how

continuous diffusion and diffusion breaks are an important lever for

shrinking standard-cell area – at the cost of more complex design

rules and LLEs. In modern sub-10nm enablements, there are two

types of diffusion breaks: single diffusion break (SDB) and double

diffusion break (DDB). SDBs occupy a smaller space than DDBs do,

but incur greater LLE. On the other hand, while DDBs require more

area and incur more leakage than SDBs, they make devices faster

and are more immune to layout context. In this work, we ignore the

2nd DB effect for DDB cells due to its negligible impact on leakage

and timing. We study two types of standard cells, i.e., SDB cells and

DDB cells. An SDB (resp. DDB) cell has an SDB (resp. a DDB) at

both its left and right edges. In the following, we call a design with

only SDB cells as Type-I, and a design with both SDB and DDB cells

as Type-II.

Figure 1 shows two legal placements with SDB and DDB cells.

SDB and DDB cells can be placed within a single block as long

as: (i) SDB (resp. DDB) cells all align to SDB (resp. DDB) grids,

where the SDB grid has a half contacted poly pitch (CPP) offset

from the DDB grid; and (ii) there is a process-specific minimum

spacing requirement (SpacinдSD in Figure 1) between neighboring

SDB and DDB cells. In Figure 1, for a device in a green circle, D1 is

the distance to the first placed SDB, and D2 is the distance between

the first placed SDB and the second placed SDB. That is, D2 refers

to the “2nd DB distance of an SDB cell”, and we use the term “2nd

DB effect” to indicate the threshold voltage (Vt) shift due to D2 for

an SDB cell. Note that the Vt shift due to the 2nd DB effect causes

a timing path with fixed cell instances and routing to be impacted

by the neighbors of its cell instances. Since an SDB cell can have a

second placed SDB on each of its left and right sides, in this work,

we use the distance to the farther of the two second placed SDBs

as the D2 of a cell.

Design impact from the 2nd DB effect. Table 1 shows results of a

motivating analysis that demonstrates how much the 2nd DB effect



Figure 1: Examples illustrating DB types and placement con-

straints. (a) Layout with four SDB cells (Type-I). (b)Mixed-DB

layout with three SDB cells plus one DDB cell (Type-II). The

examples show the placement grid for each DB and a spac-

ing constraint. The dashed lines show SDB and DDB grids.

SpacinдSD denotes the minimum spacing requirement be-

tween neighboring SDB and DDB. The delay and leakage of

devices in the green circles change according to D2. D2 only

considers the distance between the first placed SDB (which is

intrinsic to the cell itself) and the second placed SDB (which

depends on the placement of the neighbor cell). Only SDB

cells experience a significant 2nd DB effect.

changes timing results and leakage power of designs.1 We use two

designs, AES and VGA, from OpenCores [25] and a reference flow

of Cadence Innovus Implementation System v17.1 [22] to generate

post-P&R designs. We note that filler cell insertion is a critical step

that determines 2nd DB distances of cells and the impact of the

2nd DB effect. Filler cells are inserted into empty spaces after place-

and-route (P&R), typically starting with larger-width filler cells and

finishing with smaller-width filler cells so as to greedily minimize

instance count. However, filler cells with large width can create

large 2nd DB distances for any neighboring non-filler cells. So, in

order to see the design impact of the 2nd DB effect, we compare two

filler cell insertion strategies: largest to smallest filler (Standard)

and small filler only (Small). As seen in Table 1, when we perform

2nd DB-aware analysis for designs which come from a commercial

P&R tool, 2nd DB-aware leakage is larger than 2nd DB-unaware

leakage by 8.8% to 144.4%. In other words, actual leakage can be

much larger than the leakage reported by signoff analysis that does

not take into account the 2nd DB effect. Further, after 2nd DB-aware

timing analysis, setup worst timing slacks are improved or similar,

and hold worst timing slacks are not changed, due to small 2nd

DB impacts for hold corner. Overall, this preliminary study shows

that there is substantial model-hardware miscorrelation in terms

of leakage power because the 2nd DB effect is not comprehended

in cell library models. Since the physical location of the 2nd DB

1Details of our modeling of 2nd DB effect are given in Section 3.2.

Table 1: Preliminary study of the 2nd DB effect. We use

80% initial utilization and 0.35ns target clock period. Design

nomenclature specifies design name (AES or VGA), filler in-

sertion strategy (Small (sm) or Standard (std)), and design

type (Type-I or Type-II). WS denotes the worst slack of a

design. All values are reported by a leading-edge commer-

cial P&R tool. Columns 2–4 have pairs of values from 2nd

DB-unaware and 2nd DB-aware analysis, respectively. Δ in-

dicates the percentage increase in leakage when going from

(incorrect) 2nd DB-unaware to (correct) 2nd DB-aware analy-

sis.

Design Hold WS (ns) Setup WS (ns) Leakage (mW) (Δ%)

AES-sm-I 0.108 / 0.108 -0.056 / -0.047 0.387 / 0.742 (91.7%)

AES-sm-II 0.113 / 0.113 -0.055 / -0.055 0.419 / 0.456 (8.8%)

VGA-sm-I 0.080 / 0.113 0.016 / 0.022 1.486 / 3.186 (114.4%)

VGA-sm-II 0.086 / 0.086 -0.002 / -0.002 1.523 / 2.439 (60.1%)

AES-std-I 0.108 / 0.108 -0.056 / -0.045 0.387 / 0.909 (134.9%)

AES-std-II 0.113 / 0.113 -0.055 / -0.054 0.419 / 0.474 (13.1%)

VGA-std-I 0.080 / 0.080 0.016 / 0.024 1.486 / 3.632 (144.4%)

VGA-std-II 0.086 / 0.086 -0.002 / -0.001 1.523 / 2.640 (73.3%)

Figure 2: Target of our work. We seek to minimize actual,

2nd DB-aware leakage power with no timing degradation.

matters when tracing timing impacts of optimizations, the physical

layout design and signoff flows should be aware of the 2nd DB

effect to avoid this model-hardware miscorrelation.

In what follows, we focus on mitigation of analysis error – in par-

ticular, underestimation of leakage – that is caused by unawareness

of the 2nd DB effect. We assume a place-and-route methodology

that inserts only Small fillers, to a priori minimize the leakage im-

pact of the 2nd DB effect. We only consider setup timing slacks

during our optimization.

This work. In this work, we study design impacts caused by the

2nd DB effect and propose a 2nd DB-aware leakage optimization

that uses cell relocation, gate sizing, Vt swapping and DB (Type)

swapping to mitigate the P&R tool’s lack of awareness of 2nd DB

effect. Our main contributions are summarized as follows.

• We study design impacts of the 2nd DB effect for designs

using only SDB cells (Type-I) and both SDB and DDB cells

(Type-II).

• We propose a 2nd DB-aware leakage optimization and place-

ment methodology that uses relocation, gate sizing, Vt swap-

ping and DB swapping. Our algorithm honors the place-

ment grid for each DB and a specified spacing constraint

(SpacinдSD in Figure 1) between SDB and DDB.



Figure 3: Overview of our overall optimization flow. The red

box indicates steps that we implement. A commercial P&R

tool is used for all other steps in the flow.

• We achieve 80% leakage recovery (i.e., of the leakage incre-

ment seen with correct, 2nd DB-aware analysis) on average

without changing design performance.

Figure 2 conceptually illustrates the target of our work. We aim

to recover leakage increments caused by the 2nd DB effect without

any increase of negative timing slacks.

The remainder of our paper is organized as follows. Section 2

describes previous related works. Section 3 presents our problem

statement, leakage model and optimization approach. Section 4

describes our experimental setup, key experiments, and results. We

conclude in Section 5.

2 PREVIOUS WORK

We categorize relevant previous works as: (i) gate sizing and (ii)

local layout effect and placement.

Gate sizing. Traditional gate sizing problems have been studied for

many years. Objectives of the problems are to find the gate width

and threshold voltage for each cell so that a circuit can achieve

optimized timing, power, and area as a result. Gupta et al. [5] de-

scribe a sensitivity-based gate sizing algorithm to reduce leakage

power. Hu et al. [10] and Kahng et al. [11] propose global timing

recovery and leakage power reduction with a sensitivity-guided

greedy sizing algorithm. Wei et al. [17] minimize total power using

gate sizing and Vt assignment. Luo et al. [14] propose a combined

methodology with placement and gate sizing. The work of [14]

minimizes power by sequential placement, sizing, and Vt swapping

stages with a slack management scheme. The works of [12][15]

suggest heuristics for co-optimization of sizing and placement with

minimum implant area constraints.

Local layout effect and placement. In sub-10nm, various works

address LLEs from a standard cell perspective. Yang et al. [19] de-

scribe LLEs of 2nd DB and gate-cut stress in 10nm high performance

mobile SoCs. Zhao et al. [20] introduce gate-cut stress induced LLEs

on 14nm FinFET, and Xie et al. [18] introduce SDBs and DDBs in

actual FinFET devices. At the same time, many recent works aim to

mitigate LLEs for detailed placement. Ha et al. [6] introduce a pre-

placement methodology to mitigate LLEs from a long SDB created

Figure 4: Normalized derating values for (a) leakage power

and (b) cell delay according to the 2nd DB distance.

by vertically stacked SDB cells and a 2nd DB-aware timing analysis

scheme. Berthelon et al. [2] propose a design and technology co-

optimization with strain-induced LLEs along with asymmetric and

non-rectangular active area. Han et al. [7] propose a detailed place-

ment method to minimize the number of abutments between cells,

and Du et al. [3] deal with new placement constraints of a 16nm

technology. Han et al. [8] [9] also develop detailed placement algo-

rithm to reduce the number of steps for diffusion height differences

between adjacent cells. Overall, our work is distinguished from the

previous works in that (i) we handle both sizing and placement

with constraints from SDB and DDB, and (ii) we mitigate leakage

increments caused by the 2nd DB effect, which is introduced as a

recent type of LLE.

3 2nd DB-AWARE LEAKAGE OPTIMIZATION
AND PLACEMENT

In this section, we first describe our problem statement and the

timing and leakage model for the 2nd DB effect. We then describe

our methodology for detailed placement and leakage optimization.

Figure 3 shows the overall flow of our optimization. The input of

the flow is an optimized post-route design database produced by

a commercial P&R tool. Our leakage optimization is performed

imax iterations, and is followed by incremental routing. After rout-

ing, Vt swapping with fixed cell location recovers negative timing

slacks caused by routing changes. This incremental routing and Vt

swapping is performed by a commercial P&R tool.

3.1 Problem Statement

Given a post-P&R design, our goal is to swap cells and perturb

placement so as to minimize leakage with 2nd DB awareness.

Input: A post-P&R design database from a commercial tool.

Output: An optimized design with 2nd DB awareness.

Objective: To minimize leakage power of the design.

Do: Relocation, gate sizing, Vt swapping and DB swapping.

Constraints: No total negative slack (TNS) degradation, no cell

overlap, grid-based placement for each DB, and a spacing constraint

between SDB and DDB.

3.2 Modeling for the 2nd DB Effect

Delay and leakage power of devices are changed by the 2nd DB

effect. We introduce our model for 2nd DB using derating values of

Vt shift from the work of [19] and our collaborator [21]. Figure 4

shows the normalized derating values for leakage power and delay.

According to [21], we use the following sets of process, voltage, and



Figure 5: Examples of 2nd DB distance change due to cell re-

location and sizing. The red color of D2C2 indicates the 2nd

DB distance of C2 and the green color of D2C1 indicates the

2nd DB distance of C1.

temperature conditions: (SS , 0.72V, −40◦C) for setup corner and

(FF , 0.88V, 125◦C) for hold corner. Since the Vt shifts for PMOS and

NMOS are different, we assume that the averaged Vt shift for cells is

proportional to 2nd DB distance for SS and FF [21]. Advised by [21],

we calculate the derating values for leakage power and delay of

cells by assuming that leakage power exponentially increases with

2nd DB distance. In our library, we assume that a given DDB cell

is 2CPP wider than the corresponding SDB cell, and that the 2nd

DB effect maxes out at the maximum width of standard cells in

our library. Furthermore, we follow design rules for the spacing

constraint between neighboring SDB and DDB cells. Our derated

libraries are created using a 2CPP-step of 2nd DB distance. We do

not have a 2nd DB distance of 1CPP because minimum cell width

is 2CPP. And, we also round down odd-valued 2nd DB distances to

even values because libraries with a step size of 1CPP incur more

than 3× peak memory usage during our optimization.2

Algorithm 1 2nd DB-aware Relocation Algorithm.

Procedure: Relocation()
Inputs: a netlist D , a placement of D
Outputs: an optimized netlist

1: M ← � ; k ← 0
2: for all cell c in the netlist do
3: if cell c is neither a DDB cell nor a flip-flop then
4: if cell c is abutted with c .cl and whitespace on right side of cell c ≥Wmin then
5: mk .c ← c ;mk .m ← move to the right byWmin

6: update c .2nddb, c .cl .2nddb, c .cr .2nddb
7: mk .Δleakaдe ← Δleakaдe ; k ← k + 1
8: end if
9: if cell c is abutted with c .cr and whitespace on left side of cell c ≥Wmin then
10: mk .c ← c ;mk .m ← move to the left byWmin

11: update c .2nddb, c .cl .2nddb, c .cr .2nddb
12: mk .Δleakaдe ← Δleakaдe ; k ← k + 1
13: end if
14: end if
15: end for
16: whileM � � do
17: Pickmk with the maximummk .Δleakaдe inM
18: Commitmk ;M ← M\mk

19: if TNS degrades then
20: Revert
21: end if
22: end while

2 When the 2nd DB-unaware leakage is 0.225mW for the AES Type-I design (60%

utilization, 0.5ns clock period), the 2nd DB-aware leakage with the 1CPP step size
is 0.319mW, and that with the 2CPP step size is 0.295mW; our optimization results
(leakage recovery) are 99.0% and 97.1%, respectively.

3.3 2nd DB-Aware Relocation

We first describe our sensitivity-based method to relocate cells with

no TNS degradation. Cell location is critical for the 2nd DB effect.

Figure 5 illustrates how 2nd DB distance varies due to cell relocation

and sizing. In this figure, D2C2 denotes the 2nd DB distance of

cell C2 and D2C1 denotes the 2
nd DB distance of cell C1. If C2 is

relocated to the right by 2CPP, then the 2nd DB distances of both

C1 and C2 decrease to 2CPP. If C2 is sized down and still abuts C1,

then only D2C1 decreases. Therefore, we can reduce the 2nd DB

distance by cell relocation, and recover leakage power. Algorithm 1

shows this relocation flow (Table 2 gives notations that we use.)

Line 1 initializes an empty set of candidate moves. In Lines 2–15,

we calculate candidate moves per cell and the sensitivity per move.

Here, we only consider moves of SDB combinational cells, as shown

in Lines 2 and 3. In Lines 4–8, for each cell, we add a candidate right

move (relocated to the right) and calculate the sensitivity (leakage

recovery due to the move) if the cell has no whitespace on the

left but whitespace on the right. Similarly, in Lines 9–14, we add a

candidate left move and calculate the sensitivity. In Lines 16–21, we

greedily commit the candidate move with the highest sensitivity as

long as there is no TNS degradation and the placement is legal.

Table 2: Notations.
Notation Meaning

mk .c cell for the kth candidate

mk .m method for the kth candidate

mk .sf sensitivity for the kth candidate

mk .Δleakaдe Δleakaдe for the kth candidate

Δleakaдe Δleakaдe of a design

M set of candidates

c .cl left neighboring cell of cell c
c .cr right neighboring cell of cell c

c .2nddb 2nd DB distance of cell c
Wmin minimum cell width

Algorithm 2 2nd DB-aware Leakage Optimization.

Procedure: ReduceLeak ()
Input: a netlist D , a placement of D
Output: an optimized netlist

1: Relocation(D)
2: M ← � ; k ← 0
3: for all cell c in the netlist D do
4: if cell c is not a flip-flop then
5: if cell c is downsizable then
6: mk .c ← c ;mk .m ← downsize
7: update c .cl .2nddb, c .cr .2nddb
8: mk .sf ← Δleakaдe/Δslack ;M ← M ∪mk ; k ← k + 1
9: end if
10: if cell c is not a highestV t then
11: mk .c ← c ;mk .m ← downV t
12: mk .sf ← Δleakaдe/Δslack ;M ← M ∪mk ; k ← k + 1
13: end if
14: if cell c .cl or c .cr is a different DB type from cell c then

15: mk .c ← c ;mk .m ← chanдeDB
16: update c .cl .2nddb, c .cr .2nddb
17: mk .sf ← Δleakaдe/Δslack ;M ← M ∪mk ; k ← k + 1
18: end if
19: end if
20: end for
21: whileM � � do
22: Pickmk with the maximummk .sf inM
23: Commitmk ;M ← M\mk

24: if TNS degrades then
25: Revert
26: end if
27: end while



3.4 2nd DB-Aware Sizing

Algorithm 2 describes our sensitivity-based methodology for gate

sizing, Vt swapping and DB swapping. Similar to the methodology

in Section 3.3, we greedily perform either gate sizing, Vt swapping

or DB swapping for each cell according to a pre-sorted list. Line 2

initializes an empty set of candidate moves. In Lines 3–20, we first

populate the list with all candidate moves per cell, i.e., swapping

to a higher Vt, downsizing and DB swapping. Δleakaдe/Δslack
is used as our sensitivity function and Δslack denotes the timing

slack difference for the swapped cell. Here, we only consider swaps

of combinational cells, as shown in Line 4. In Lines 5–9, we add a

candidate and perform the sensitivity calculations for downsizing

if the cell is downsizable. Similarly, Lines 10–13 and Lines 14–17

add a candidate and calculate the sensitivity for Vt swapping and

DB swapping, respectively. 2nd DB distances are calculated for

downsizing and DB swapping, as shown in Lines 7 and 16. In Lines

21–27, we then greedily commit the candidate move with the high-

est sensitivity as long as there is no TNS degradation.

4 EXPERIMENTS

4.1 Experimental Setup

We implement our heuristics in C++ with OpenAccess 2.2.43 [24] to

support LEF/DEF [23]. We perform our experiments in a commer-

cial 14nm FinFET technology with 9-track triple-Vt libraries. We

apply our optimization to four design blocks, AES, MPEG, JPEG and

VGA, from OpenCores [25]. We use two types of designs: Type-I

has only SDB cells and Type-II has both SDB and DDB cells. We

vary the target clock period from 0.3 to 0.5ns, with a step size of

0.05ns; and we vary the block utilization from 60% to 80%, with a

step size of 5%. For each data point, we denoise the experiments

using three runs, by varying the target clock period by ±1ps. We

report the median value of the leakage recovery. We use Synop-

sys Design Compiler L-2016.03-SP4 [27] for synthesis and Cadence

Innovus Implementation System v17.1 [22] for P&R, with leakage

optimization in the highest effort mode. All the timing results in

this section are reported by OpenSTA [26]. Due to different timing

results between the commercial P&R tool and OpenSTA, we use

a correlation methodology from [16] to correlate the P&R tool to

OpenSTA. All experiments are performed with eight threads on a

2.6GHz Intel Xeon server.

We measure how much recovery we achieve by our flow, as

shown in Equation (1).

Recovery = 1 − lopt − lbase

lactual − lbase
(1)

We use lbase to denote the leakage value reported by the P&R tool

at post-P&R stage, which is 2nd DB-oblivious. We use lactual to

denote the 2nd DB-aware leakage value at post-P&R stage. We

use lopt to denote the leakage value after our optimization. Thus,

Recovery is the leakage recovery. Note that according to the metric

Recovery, it is possible to have >100% leakage recovery. For exam-

ple, if the 2nd DB-aware analysis increases leakage from 0.182mW

(lbase ) to 0.190mW (lactual ), and our optimization reduces leakage

to 0.180mW (lopt ), then we say that Recovery is 125%.

Figure 6: Runtime analysis for AES design. We use Type-II,

60% initial utilization and 0.5ns clock period. 1st loop de-

notes the first iteration of our optimization and 2nd loop de-

notes the second iteration. Sizing includes sensitivity calcu-

lations and cell moves for gate sizing, Vt swapping and DB

swapping.

4.2 Design Space Exploration

In this section, we explore the sensitivity of results to design space

choices. We explore three knobs for the experimental setup: (i)

2CPP padding for all flip-flops, (ii) DB swapping and (iii) multiple

optimization iterations. We apply a minimum space of padding

between flip-flops, because our optimization does not touch flip-

flops. Flip-flops can be abutted with other cells but we require

at least 2CPP space between flip-flops. We perform four sets of

experiments to validate our experimental setup:

• Baseline: A design with 2CPP padding for flip-flops.

• Expt. 1: A design without 2CPP padding for flip-flops.

• Expt. 2: A design without DB swapping.

• Expt. 3: A design with four iterations (imax = 4).

• Expt. 4: Sensitivity to timer setting (tolerance).

For the baseline, we use 2CPP padding for flip-flops and execute

two iterations including DB swapping. Flip-flops are wide and they

contribute a large portion of the 2nd DB leakage increase to neigh-

boring cells. Expt. 1 shows that leakage recovery is degraded by

29.7% without 2CPP padding for flip-flops. In Expt. 2, we compare

our baseline to the optimization with DB swapping and show that

2.2% leakage recovery can be achieved with the addition of DB

swapping. In Expt. 3, we perform our optimization in four itera-

tions and compare the result to the baseline, where we only have

two iterations of optimization. Four iterations give more leakage

recovery in exchange for longer runtime. In Expt. 4, we explore the

sensitivity to timer tolerance. The tolerance for the timer denotes a

minimum percentage change in delay that causes propagated delays

to be recomputed during incremental timing updates. We sweep

the tolerance from 0% to 1% with a 0.1% step. As shown in Table 5,

a design with 0.8% tolerance shows 67% runtime improvement and

the same leakage recovery compared to a design with 0% tolerance.

As a result, we choose 2CPP padding for flip-flops as our default

P&R setup, two iterations of optimization including DB swapping,

and 0.8% tolerance in incremental timing updates for all reported

results in Section 4.3.

4.3 Main Results

We conduct two overarching experiments to show results of our

flow. The first experiment shows the leakage optimization results

over four design blocks. The second experiment further studies the

sensitivity of leakage recovery to target clock period and initial

utilization of the design.



Table 3: Experimental results for all the design blocks. We set 60% initial utilization and 0.5ns target clock period. The table

reports (i) the number of instances in a design (#Inst.), (ii) design type which defined in Figure 1 (Type), (iii) worst setup slack

(WS), (iv) total negative setup slack (TNS), (v) percentage of leakage increase from 2nd DB-unaware analysis (Δ%), (vi) runtime

of leakage optimization including relocation and sizing (LeakOpt), and (vii) runtime of incremental routing by a commercial

P&R tool (Routing).

Design information 2nd DB-unaware 2nd DB-aware Our results Runtime

Design #Inst. Type
WS TNS lbase WS TNS lactual (Δ%) WS TNS lopt (Δ%) Recovery

LeakOpt Routing Total

(ns) (ns) (mW) (ns) (ns) (mW) (ns) (ns) (mW) (s) (s) (s)

AES
13806 Type-I 0.011 0.000 0.225 0.012 0.000 0.295 (31%) 0.001 0.000 0.227 (1%) 97.1% 207 819 1026

13279 Type-II 0.002 0.000 0.182 0.002 0.000 0.190 (4%) -0.001 -0.002 0.180 (-1%) >100% 228 740 968

MPEG
12380 Type-I 0.004 0.000 0.227 0.005 0.000 0.272 (20%) -0.001 -0.003 0.245 (8%) 60.0% 257 902 1159

12250 Type-II 0.004 0.000 0.228 0.004 0.000 0.264 (16%) 0.002 0.000 0.237 (4%) 75.0% 261 872 1133

JPEG
47061 Type-I 0.002 0.000 0.683 0.002 0.000 0.867 (27%) 0.001 0.000 0.745 (9%) 66.3% 1820 6911 8731

39422 Type-II 0.003 0.000 0.697 0.003 0.000 0.765 (10%) 0.002 0.000 0.714 (2%) 75.0% 2039 7093 9132

VGA
67491 Type-I 0.011 0.000 1.203 0.012 0.000 1.786 (48%) 0.001 0.000 1.295 (8%) 84.2% 3819 29183 33002

67546 Type-II 0.015 0.000 1.230 0.015 0.000 1.449 (18%) -0.002 -0.010 1.256 (2%) 88.1% 3998 30799 34797

Leakage optimization. The design information and experimental

results are summarized in Table 3. We use four design blocks, AES,

MPEG, JPEG and VGA, with both Type-I and Type-II designs. We

show worst slack (WS), total negative slack (TNS), leakage (Leak),

leakage recovery (Recovery) and runtime. Going from 2nd DB-

unaware to 2nd DB-aware analysis, the leakage is increased by

up to 43%. After our leakage optimization flow with incremental

routing and timing recovery performed by the commercial tool, we

achieve 80% leakage recovery on average, with negligible timing

degradation. Figure 6 shows the runtime breakdown in our flow.We

can see that 24% of runtime is spent on gate sizing, Vt swapping and

DB swapping, including sensitivity calculations. 76% of runtime is

spent on the incremental routing by a commercial P&R tool. Next,

we verify the robustness of our optimization with different clock

period and utilization.

Sensitivity to target clock period and utilization. Leakage in-

creases due to the 2nd DB effect and optimization results vary by

initial utilization and target clock period. We sweep initial utiliza-

tion and target clock period for each design so as to study design

impacts and our achievement. Figures 7(a) and (b) show leakage

increments due to the 2nd DB effect. Figures 7(c) and (d) show

percentage recovery of the leakage after our optimization. In this

experiment, 70% initial utilization is used for target clock period

sweep, and 0.4ns clock period is used for initial utilization sweep.

As target clock period decreases, the Type-I case has more leakage

increments caused by the 2nd DB effect because cells are closely

placed. 3 However, there are smaller changes for the Type-II case

because DDB cells mitigate the 2nd DB effect. On the other hand,

as initial utilization increases, both the Type-I and Type-II cases

have more or similar effects. Our optimization with various clock

period and utilization achieves 80% leakage recovery on average.

For the testcases, the recovery seen in Figures 7(c) and (d) is stable

across clock periods and utilizations.

5 CONCLUSIONS

In this work, we study the 2nd DB effect, which is one of the critical

LLEs for physical design in sub-10nm technologies, along with the

mixed-DB design that can have both SDB and DDB cells. The 2nd

3With a tight timing constraint, there are more large cells and cells are more closely

placed to reduce the net delay, resulting in larger 2nd effect.

Table 4: Experimental results for design space exploration.

We use AES Type-II design with 60% initial utilization and

0.5ns target clock period.

Expt.

2nd DB-unaware 2nd DB-aware Our results

TNS lbase TNS lactual (Δ%) TNS lopt (Δ%) Recovery
(ns) (mW) (ns) (mW) (ns) (mW)

Baseline 0.000 0.182 0.000 0.190 (4%) -0.002 0.180 (-1%) >100%

Expt. 1 0.000 0.178 0.000 0.198 (11%) -0.002 0.186 (4%) 60.0%

Expt. 2 0.000 0.182 0.000 0.190 (4%) -0.002 0.183 (1%) 87.5%

Expt. 3 0.000 0.182 0.000 0.190 (4%) -0.003 0.178 (-2%) >100%

Table 5: Experimental results for sensitivity to the tolerance.

We use AES Type-II design with 60% initial utilization and

0.5ns target clock period. The 2nd DB-aware leakage power

of the design is 0.190mW as shown in Table 3. The table re-

ports (i) runtime of relocation step (Reloc.), (ii) runtime of

sizing (Sizing), (iii) runtime of leakage optimization includ-

ing relocation and sizing (LeakOpt), (iv) worst setup slack

(WS), and (v) 2nd DB-aware leakage power after optimiza-

tion (Leak). 1st loop denotes the first iteration of the opti-

mization, and 2nd loop denotes the second iteration.

Tolerance

1st Loop 2nd Loop Our results

Reloc. Sizing Reloc. Sizing LeakOpt WS Leak

(s) (s) (s) (s) (s) (ns) (mW)

0% 23 320 22 316 681 -0.001 0.180

0.1% 23 152 21 149 345 -0.001 0.180

0.2% 23 142 22 140 327 -0.001 0.180

0.3% 23 137 22 132 314 -0.001 0.180

0.4% 23 134 22 130 309 -0.001 0.180

0.5% 23 128 21 125 297 -0.001 0.180

0.6% 23 119 22 117 281 -0.001 0.180

0.7% 23 107 22 103 255 -0.001 0.180

0.8% 23 94 21 90 228 -0.001 0.180

0.9% 23 90 22 88 223 -0.001 0.184

1.0% 23 87 22 84 216 -0.001 0.187

DB effect is a new challenge to the physical design flow, and design-

ers must take this effect into account in order to mitigate model-

hardware miscorrelation. We propose new heuristics to recover

leakage power increments caused by the 2nd DB effect, including

the use of 2nd DB-aware relocation, gate sizing, Vt swapping and

DB swapping while satisfying placement constraints. Our work

achieves 80% leakage recovery on average using the proposed flow.

Our future work directions include: (i) detailed placement consider-

ing inter-row minimum implant width and spacing constraints due



Figure 7: Studies of leakage power with varying target clock period and initial utilization. (a) Leakage increment from the 2nd

DB effect vs. target clock period. (b) Leakage increment from the 2nd DB effect vs. initial utilization. (c) Leakage recovery by

our optimization vs. target clock period. (d) Leakage recovery by our optimization vs. initial utilization.

to the mix of SDB and DDB cells, (ii) more comprehensive study

of sensitivity functions for improved leakage recovery considering

multiple corners, and (iii) support of mixed-DB within one cell, e.g.,

PMOS has SDB and NMOS has DDB within one standard cell.
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